CSCI 210: Computer Architecture
Lecture 26: Control Path

Stephen Checkoway
Slides from Cynthia Taylor

CS History: Apple Lisa

First mass-market PC that used a
graphical user interface

Released in 1983

Cost $9,995 (equivalent to
$29 400 in 2022)

Used the Motorola 68000 CPU,
the first 32-bit CPU

Shipped with 1 MB of RAM

Control Path

e QOur data path is complicated, and we don’t use each element
for each instruction or use it in different ways, e.g.,
— add and addi use the ALU but not the data memory;

— lw, sw, add, and addi require the ALU to perform an addition whereas
beq and sub require the ALU to perform a subtraction

* How do we know which elements to use or what operation to
have them perform? The information is encoded in the
instruction itself!

What control sighals do we need?

Our data path consists of four major components
1. Instruction memory and PC register

2. Register file
3. ALU

4. Data memory

For each component, we’re going to consider what control
signals it needs to perform the correct operation for the
instruction on the correct data

Warmup: Consider the multiplexer below. What
value must the select input S, have for the output Z

to have the same value as input B? \13\
A—0
Z
B—1
v
A. O
B. 1
C. 2
D. It depends on the value of A
E. It depends on the value of both A and B

Blue inputs are some of the control signals
Today, we’re going to hook some logic up to them

\ PCSrc
>Add l .

ALU
4 _’/ IH Add o it

Y
xc=s

Read ALUS ALU operation
Read i rc 4 perati
—PC address register 1 Read |, MemWrite
Read data 1 MemtoReg
Instruction register 2
Registers
Write 29 Read Address Rdeae;g
Instruction register data 2
memory _
| data
| Write Data
RegWrite " |data memory
MemRead
\1\6= Sign- 32
~ | extend

Recall: PLASs

e Derived from truth table

using sum of products

o——4

LJ Lj LJ * Allow us to encode

arbitrary functions

-——D - * Used to derive control
signals in the data path
from bits in the
instruction

Datapath With Two Control Units

Add

ALU
result

Y
- xc= ©

4 — Add

RegDst
Branch
| MemRead
Instruction [31-26] MemtoReg
> Control ALUOp
MemWrite
| ALUSrc
RegWrite

Instruction [25-21] Read
[2 .
register 1 gagq
Instruction [20-16] Read data 1
Instruction __I | " | register 2
[31-0] Write Read (0
Instruction | | |instruction [15-11] register data 2
memory ||e >
Write

data Registers

Read
PC address

Zero
ALU ALU
result

Read

Address data

“xc=°

“xc=
Oxc=—

Write Data

data memory
Instruction [15-0] 16 @ 32

Instruction [5-0]

Y

When the processor is executing the instruction
or St0, $tl, $t2

what value does the select input to the multiplexer

need to have?

| Read
register 1 Raaqg

| Read data 1
register 2

-
write ~ Read 0
| register data2 g Itlll
| Write o> 1"
A O data Registers
p ,) extend|
C. X (a “don’t care”)
|

nstruction [5-0]

Zero
ALU ALU
result

R-type

Load/
Store

Branch

The Main Control Unit

Control signals derived from instruction opcode

0 rs rt rd shamt funct

31:26 25:21 20:16 RlS:ll 10:6 5:0
0x23,0x2B | rs rt oﬁ‘set

31:26 25:21 20:16 ’\ \ 15:0 1
0x04,0x05 | rs rt s\ffé\et

31:26 25:21

-

J

&

J

&

Y

read

~

not used
for load

20:16 \\

always
read;

write for
R-type and
load

15:0 \

sign-extend
and add

Let’s derive some control signals!

* We’'ll tackle this systematically by following the data as it flows
through the data path

* Recall that every instruction has 3 steps to be executed:

1.
2.

Fetch the instruction from instruction memory and update the PC

Decode the instruction and get the operands for the ALU out of the
register file or from an immediate field in the instruction

Execute the instruction and store the result back into the register
file

Fetching Instructions

Read instruction from instruction memory

Update PC value to address of next (sequential)
instruction

PC is updated every clock cycle, so it does not need
an explicit write control signal just a clock signal

Read from memory each time, so we don’t need an
explicit control signal for the instruction memory or
PC

> Add
4 e

»PC

“|Address

Instruction
Memory

Read INStIUCLiO N

Decoding Instructions

* Send fetched instruction’s opcode to thersun

main control unit

»Read reg 1

Register Read —

»(Read reg 2 Data 1
File
Write reg

Read

Data 2
Write Data

R-type |O rs rt rd shamt [funct
31:26 25:21 20:16 15:11 10:6 5:0
Load/ 0x23,0x2B | rs rt address
Store
31:26 25:21 20:16 15:0

signals are produced

Read two values from the register file
Register numbers are contained in the instruction (rs and rt)
Decode happens for every instruction; this is where control

Producing control sighals

After reading opcode

Produce most control
signals

Includes the ALUOp
control signal—which
goes to the ALU control
unit—and the ALUSrc
control sighal which
selects the ALU’s second
operand

PC

L

Read
address

Instruction
[31-0]

Instruction
memory

RegDst
Branch

/

Add

MemRead

|
Instruction [31-26] [\‘
» Control

MemtoReg

| ALUSrc

ALUOp
MemWrite
RegWrite

Instruction [15-0]

16@32

Instruction [25-21] Read
4 > ;
register 1 gogq
Instruction [20-16] Read data 1
__I I 5 register 2
M| | write Read (0
Instruction [15-11] | ¥ || register data2 m
L -
1 | write I
data Registers

Zero
ALU 5Ly

result

_ | Write

‘ Instruction [5-0]

" | data

Read
Address data

Data
memory

Oxe=—

When the processor is executing the instruction

sw $s0, 28 ($sp)
what value does the select input to this multiplexer
need to have?

Instruction [25-21] Read |
)i -

~ | register 1 Raaq
Instruction [20—16] Read data 1
I ~ | register 2

-
0
Ml write ~ Readligli, (0
Instruction [15-11]| x | | register data M
? N\ .
| Write _ o> 1’(
A O data Registers

B. 1 Instruction [15-0] 16 [gign-| 32
py ,) ~extend ~
C. X (a “don’t care”)

Instruction [5-0]

Zero
ALU ALU
result

When the processor is executing the instruction
lw $s0, 28 ($sp)
what value does the select input to this multiplexer

n e e d tO h ave ? Instruction [25—-21] Read '
! g register 1 pagqg
Instruction [20-16] | Read data 1

I ~ | register 2
Write Read

A. O Instruction [15—11] register data 2 [l
* [>
| Write q
B 1 data Registers
o V4 Va4
C. X (a “don’t care”) instruction [15-0] | 16 [sign.| 82
l ~ \extend| *

Instruction [5-0]

“xc=20

Opcode rs rt address

31:26 25:21 20:16 15:0

For load/store, our ALU operation will be

. Add

. And

. Set less than

. Subtract

. None of the above

Ainvert
Bimvert
L
a -{ [o i -
1
L
b

)
ey

lw St0, 4(St1)

= Overflow

ALU Control Unit

 Combinational logic (the main control unit) derives 2-bit
ALUOp signal from opcode

* ALU Control Unit takes ALUOp and instruction funct field as
inputs and derives a 4-bit ALU control signal

e I:\i"\-'l.—‘,'t Carryl
opcode ALUOp | Operation ALU function . y i
ads——0) -
lw 00 load word add | . } °
1
SW 00 store word add . ——Dﬁ 1
beq 01 branch equal subtract : _— .
b — 0
R-type 10 arithmetic/logic depends on funct IO R e
y : g
iun%’ ALU Less = 3
0p_/ ! Main 6 Allcy il
6 Control Al U(‘)p L »| Control 4 ' I
2 Qetow Oveton

e ALU used for

ALU Control signal

— Load/Store: op = add
— Branch: op = subtract

— R-type: op depends on funct field

ALU control Function Ainvert Binvert/Carryln0 | Operation
0000 AND 0 0 00
0001 OR 0 0 01
0010 add 0 0 10
0110 subtract 0 1 10
0111 set-on-less-than |0 1 11
1100 NOR 1 1 00

= Set

Owverflow

ALU Control > =

- T
b — 0
- -— [2
- -
’. 1

Takes as input 2-bit ALUop (derived from -
opcode) and 6-bit funct field; outputs 4 bits e

Instruction ALUOp funct ALU function Ainvert Binvert ALU

operation

load word 00 (add) XXXXXX add 0 0 10 (add)

store word 00 (add) XXXXXX add 0 0 10 (add)

branch equal 01 (subtract) XXXXXX subtract 0 1 10 (add)

add 10 (r-type) 100000 add 0 0 10 (add)

subtract 100010 subtract 0 1 10 (add)

AND 100100 AND 0 0 00 (and)

OR 100101 OR 0 0 91 (or)

NOR 100111 NOR 1 1 00 (and)

set-on-less-than 101010 set-on-less-than 0 1 11 (less)

Executing R Format Operations

R format operations (add, sub, slt, and, or)
31 25 20 15 10 5 0

R-type: rs rt rd shamt || funct

— perform operation (specified by funct) on values in rs and rt
— store the result back into the Register File (into location rd)

RegWrite ALU control

Read Addr 1 \l
Register Read

\ 4

\ 4

> Data 1
Instruction »|Read Addr 2 L » overflow
File > — zero
o ALU
»|\Write Addr Read

\ 4

Data 2|
»{\Write Data

Note that Register File is not written every cycle (e.g., sw), so we
need an explicit write control signal for the Register File

instruction control signals for ADD?

RegDst MemToReg

O O QO W >

0 X
1 X
0 1
1 0

None of the above

i/

Y

Instruction [31-26]

Read
PC address

Instruction
[31-0]

Instruction

Instruction [25-21]
L

RegDst
Branch

T

ALU

Add result

/

\ MemRead

- xc=2 ©

MemtoReg

» Control ALUOp

MemWrite

| ALUSrc

RegWrite

. | Read

Instruction [20-16]

" | register 1 geaq

. | Read

Instruction [15—11]
@ >

i |

memory

“xc=©

L

Instruction [15-0]

" | register 2

data 1

Write Read
register data?2

Write
data Registers

»(0

“xc=

Zero
ALU ALy
result

Y

ALU

Instruction [5-0]

Address data

Write
data

Read

Oxec=—

Data
memory

control

R-type

Ir's

rt

rd

shamt

funct

31:26

25:21

20:16

15:11

10:6

5:0

ALUOp = 00 (add)
ALUOp = 01 (subtract)
ALUOp = 10 (R-type)

RegDst

Branch

MemRead

MemtoReg

ALUOp

MemWrite

ALUSrc

RegWrite

R-Type Instruction

'

Add

Instruction [31-26]

Instruction [25-21

RegDst
Branch

MemRead

Y

xc= ©

MemtoReg

Control ALUOp

MemWrite

| ALUSrc

RegWrite

| | Read
?c?o?ﬂess | register 1 Reaq
Instruction [20—16] Read data 1
Instruction | | 1 o) | redister 2 ALU Zero
[31-0] M| | write Read ALliJ 3
Instruction | | |instruction [15-11] | X [| register data2 result M
memory | |4 1 _ u
| Write 0
data Registers
Instruction [15-0] I
Instruction [5-0]
R-type |[O rs rt rd shamt funct
31:26 25:21 20:16 15:11 10:6 5:0

Executing Load and Store Operations

« compute memory address by adding base register to 16-bit signed-extended offset field
* store value written to the Data Memory

* |oad value read from the Data Memory, written to the Register File

RegWrite ALU control MemWrite
l overflow l
»Read Addr 1 zZero
Register Read > » Address
a Data 1
Instruction >Read Addrlz > Data
— File Memory Read Data
»\Write Addr AL
Read
Data 2 »(Write Data
»{\Write Data _|
. Sign MemRead
\16 Extend 32

Load/
Store

350r43 rs rt address
31:26 25:21 20:16 15:0

v
';/
[«3
o
Y
- xc= ©

RegDst

Which wire, if always set to 1 would break Iw?

4 —-/
A
\ MemRead

Instruction [31-26] MemtoReg
» Control ALUOpD

MemWrite
| ALUSrc

RegWrite B C D

Instruction [25-21] Read

Read L 4 > i
PC address register 1 Read R

Instruction [20—16] data 1

Zero

ALU 5y Read
result Address data

Instruction ||
[31-0]

Instruction
memory [

Write
register

Write
.
data Registers Data
memory

“xc=C
xe=—

“xe=

Instruction [15-0]

Load/

350r43 rs rt address
Store

31:26 25:21 20:16 15:0

ALUOp = 00 (add)
ALUOp = 01 (subtract)
ALUOp = 10 (R-type)

Load Instruction

RegDst

Branch

MemRead

MemtoReg

ALUOp

MemWrite

ALUSrc

RegWrite

*

Add

Instruction [31—26]
|

Read
address

Instruction
[31-0]

Instruction
memory

Control

RegDst
Branch

\ MemRead

Y

- xe=2 @

MemtoReg

ALUOp

MemWrite

/ ALUSrc

RegWrite

Instruction [25—-21]

Instruction [20—-16]
q

Load/
Store

_| Read
" | register

1 Read

data 1

Read

yggitseter Address” i 1{/}
Write X
data Registers Data
memory
Instruction [15-0] _ 16 @i I
*—~"|extend I
350r43 rs rt address
31:26 25:21 20:16 15:0

Executing Branch Operations

* Branch operations involve

— compare the operands read from the Register File during decode for
equality (zexro ALU output)

— compute the branch target address by adding the updated PC to

v

»

the 16-bit sign-extended offset field in the instruction

PC

v

Instruction

Read Addr 1

Register
Read Addr 2
N File
Write Addr

\ 4

\ 4

Write Data

Read
Data 1

Read

» Branch

>Add target
address

ALU control

zero (to branch
. control logic)

>ALU

Data 2

v

ALUOp = 00 (add)
ALUOp = 01 (subtract)
ALUOp = 10 (R-type)

RegDst

Branch

MemRead

MemtoReg

ALUOp

MemWrite

ALUSrc

Branch-on-Equal Instruction

Add

ALU
Add oq it "

RegDst
Branch
| MemRead
Instruction [31-26] MemtoReg
» Control

Read
address

Instruction
[31-0]

Instruction
memory

ALUOp

MemWrite
/ ALUSrc

RegWrite

Instruction [25—-21]

Read

Instruction [2‘0—16]

He

" | register 1 paaq
Read data 1
register 2
Read |
data2 |7 M
u
X
I ®
Registers

Instruction [15-0] | 16 @ 32

RegWrite

I's

rt

address

31:26

25:21

20:16 15:0

Control Truth Table

R-format| Iw SW beq
Opcode 000000 100011 | 101011 [000100
RegDst 1 0 X X
ALUSrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
Outputs | MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOpl 1 0 0 0
ALUOpO 0 0 0 1

ALUOp = 00 (add)
ALUOp = 01 (subtract)

ALUOp = 10 (R-type, use funct to determine ALUCtrl signals)

Implementing Jumps

Jump 2 address

31:26 25:0

* Jump uses word address

* Update PC with concatenation of
— Top 4 bits of PC+ 4
— 26-bit jump address
— 00

xc=Z ©

ALU
Add result

Y

Add

Instruction [31 -26]
pr———————————-

Instruction [25 -21] Read
Read .
PC address register 1 Read I\
Instruction [20 -18] Read data 1

" register 2
|nStr[l:15<1=tl0cf)1] 0 ~ Registers Read ALU ALU Read
_ M Wite data 2 result Address oa
Instruction u register data
memory Instruction [15 -11] X ;
White
1 data Data
) memory
Wiite

4
data
Instruction [15 -0] 1\6 Sign %2

Do we need to modify our design U r
to do jump?

Instruction [5-0]

A Yes — we need both new control and datapath.
Yes — we need just datapath.

B

C No — but we should for better performance.
D No — just changing control signals 1s fine.
E

Single cycle can’t do jump register.

Datapath With Jumps Added

Instruction [25—?{ Shift\.

PC

>Add

Jump address [31-0]

PC + 4 [31-28]

N ~
o6 left 2 o8

[

Instruction [31—26]

Read
address

Instruction
[31-0]

Instruction
memory

-

Instruction [25-21]

RegDst
Jump

\ Branch

T~

ALU

Add result

/

\ MemRead

 J

- xg=2 ©

xocs

MemtoReg

» Control ALUOp

MemWrite

/ ALUSrc

RegWrite

Read

Instruction [20—16]

register 1 Ragg

Read data 1

il |

Instruction [15—-11]

“xc=°

Instruction [15-0]

Y

register 2

Write Read
register data?2

Write
data Registers

16 32

Sign-

extend

Instruction [5-0]

Address

Write
data

Read
data

Data
memory

—_—

Oxc="

ALUOp = 00 (add)
ALUOp = 01 (subtract)
ALUOp = 10 (R-type)

RegDst

Jump

Branch

MemRead

MemtoReg

ALUOp

MemWrite

ALUSrc

RegWrite

What will the Signals for Jump be?

Instruction [25—?{ Shift\.

Jump address [31-0]

S \left2/

26

28

PC + 4 [31-28]

L

.

Read
address

Instruction
[31-0]

Instruction
memory

il | .

Instruction [31—26]

Instruction [25-21]
®

» Control

RegDst
Jump

\ Branch

Add

\ MemRead

MemtoReg

ALUOp

MemWrite

/ ALUSrc

RegWrite

Instruction [20—16]

Instruction [15—11]
L -

“xc=°

Instruction [15-0]

Y

Read

register 1 Ragg

Read data 1

register 2

Write Read w0
register data?2 r\dl
Write [, 1’(
data Registers

Instruction [5-0]

16 32

Sign-

extend

Address

Write
data

Read
data

Data
memory

——

Oxc="

Instruction [25-0] Jump address [31-0]

Shift).

N
> \left2/
\ 26 28 | pC +4[31-28] |
Add . \

ALU
4 —-—/ Add oot
RegDst .
Jump /
\ Branch

Y

(1

Y

M
u
X

aoddi Stl, St2, 6

\ MemRead
Instruction [31-26] MemtoReg
»| Control ALUOp
MemWrite
| ALUSIc
RegWrite
Instruction [25-21] | Read
it gggr%ss ‘| ion [20—16] | di?aa? -
nstruction — | Read
RegDst Instruction D,I g | register 2 ALU Zero
J [31_O] M Write Read =fo ALU Addressﬂead (1
ump Instruction | || |\siruction [15-11]| 5 | | register data 2 nd' result data “Lf
memory | e >~ 1 _
Branch | Vite L) 0
data Registers Write Data
MemRead 7| data Memory
' -0 16 i | 32
MemtoReg Instruction [15-0] e?:tge:d
ALUOp St2 holds 5
. Instruction [5-0]
MemWrite ALUOp = 00 (add)
ALUSrc ALUOp = 01 (subtract) Op=0x08 |rs=10 |Rt=9 |[Imm=6
, ALUOp = 10 (R-type)
RegWrite 31:26 25:21 20:16 15:0

	Slide 1: CSCI 210: Computer Architecture Lecture 26: Control Path
	Slide 3: CS History: Apple Lisa
	Slide 4: Control Path
	Slide 5: What control signals do we need?
	Slide 6: Warmup: Consider the multiplexer below. What value must the select input S0 have for the output Z to have the same value as input B?
	Slide 7: Blue inputs are some of the control signals Today, we’re going to hook some logic up to them
	Slide 8: Recall: PLAs
	Slide 9: Datapath With Two Control Units
	Slide 10: When the processor is executing the instruction or $t0, $t1, $t2 what value does the select input to the multiplexer need to have?
	Slide 11: The Main Control Unit
	Slide 12: Let’s derive some control signals!
	Slide 13: Fetching Instructions
	Slide 14: Decoding Instructions
	Slide 15: Producing control signals
	Slide 16: When the processor is executing the instruction sw $s0, 28($sp) what value does the select input to this multiplexer need to have?
	Slide 17: When the processor is executing the instruction lw $s0, 28($sp) what value does the select input to this multiplexer need to have?
	Slide 18: For load/store, our ALU operation will be
	Slide 19: ALU Control Unit
	Slide 20: ALU Control signal
	Slide 21: ALU Control
	Slide 24: Executing R Format Operations
	Slide 25
	Slide 29: R-Type Instruction
	Slide 30: Executing Load and Store Operations
	Slide 31: Which wire, if always set to 1 would break lw?
	Slide 32: Load Instruction
	Slide 33: Executing Branch Operations
	Slide 34: Branch-on-Equal Instruction
	Slide 35: Control Truth Table
	Slide 36: Implementing Jumps
	Slide 37
	Slide 38: Datapath With Jumps Added
	Slide 39: What will the Signals for Jump be?
	Slide 40: addi $t1, $t2, 6

